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Abstract— We consider the manipulation planning problem
of a Deformable Linear Object (DLO) in free or contact space.
We assume the DLO is handled by a gripper at one of its
extremities and during the manipulating phase, the grasped
end may change. The problem is solved by coupling dynamic
simulation for the DLO and kinodynamic motion planning with
contacts. We show the necessity of considering contacts for
this type of problem with several simulation experiments by
comparing with classical collision-free approaches.

I. INTRODUCTION

Motion planning plays an essential role in assembling
and disassembling industrial cases. Approaches [15] have
been proposed to the extension of this problem to robots
manipulating movable rigid objects among rigid obstacles.
Moreover, in the automotive or aeronautical industry, manip-
ulating deformable parts is necessary. In this context, most
of these consist in DLOs which are characterized by having
one dimension much greater than the other two (cable, hose,
pipe,...). In this paper, we consider the manipulation planning
problem of a DLO in free or contact space. We assume the
DLO is handled by a gripper at one of its extremities and
the grasped end may change during the manipulating phase.

As DLO can be geometrically interpreted as an infinite-
dimensional continuous curve, planning in the discretization
of this curve may lead to high finite-dimensional configura-
tion space. Furthermore, identifying the manifold of feasible
configurations, i.e. which satisfy mechanical constraints, on
this configuration space might not be straightforward.

Some work has been done using the reasonable assumption
of considering only the collision free space of quasi-static
configurations. These approaches are based on the numerical
minimization of the total elastic energy for given gripper
placements [8], [11], [17]. Recent results based on the local
solution of a geometric optimal control problem enabled
to define this configuration space [3], where it is shown
this space defines a finite dimensional manifold that can be
parameterized by a single chart. Based on these results, we
presented how this parameterization can be efficiently used
with sampling-based methods in collision-free space [13].

An approach to the manipulation planning considering
dynamics of the DLO and contacts is to plan in the finite
space of controls for a given number of grippers. In this
case, the state transition function is assumed to be known
and can be delegated, for example, to a simulator. For a
physically realistic DLO model, these might use complex
finite elements methods resulting in computationally ex-
pensive local planning schemes. For instance, the motion
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planning problem for deformable objects has been addressed
in [12] which coupled a deformable dynamics model with a
kinodynamic motion planning algorithm. However, the use of
fully deformable environments prevents the robot to be stuck
in local minima and bypasses the local control problem.

In [14], the manipulation planning problem of a DLO is
adressed from a topological perspective by focusing on knot
tying application with the help of many passive or active
grippers.

More generally, the motion planning problem for de-
formable objects has already been investigated, especially in
the case of simplified visually realistic deformation models.
For example, [2] extendeded the Probabilistic Roadmap
Methods (PRMs) [1] for deformable objects by reducing the
deformation space to a one dimensional one. In [5], Gayle
et al. used the Constraint Based Motion Planning framework
to simulate a deformable robot along a guide path computed
for a point-like robot. This work has then been extended to
the specific class of DLOs in [6].

On the other side, great progress has been done in simu-
lating deformable objects, for example eXtented Dynamics
Engine (XDE) [10] is a physics simulation software environ-
ment fully developed by CEA-LIST for realtime application
in haptic context.

II. OUR APPROACH

The problem addressed in this paper is to find a feasible
solution to the manipulation planning problem for a DLO
using dynamics and by allowing contacts. In this context,
we rely on a realistic DLO dynamics simulation using the
XDE engine and we must couple it with sampling-based
motion planning methods such Rapidly-exploring Random
Trees (RRTs).

The basic idea is to limit the number of calls to the sim-
ulator and to take advantage of provided information, such
as contact forces. The algorithm must share the use of XDE
for local step simulation with the roadmap extension of RRT.
By allowing contacts between the deformable object and
obstacles, we will show we increase the deformation space
and we can efficiently handle constrained environments, i.e.
having a very poor ε − goodness [7], and narrow passages
by sliding along the contact space.

A. The physical engine XDE

XDE offers a realistic multi-body dynamics simulation
with various kinematics constraints (e.g. joints, kinematic
loops) and with real-time performances. In addition to rigid
bodies and kinematic chains, it can also handle deformable
bodies such as DLOs, modeled as geometrically exact 3D



beams. This model enables large displacements thanks to
Reissner kinematics and uses geometrically exact finite ele-
ments.

Furthermore, XDE can also handle non-smooth contacts
accurately with friction (e.g. using Coulomb law) with con-
straints based methods. This type of simulators is well suited
for interactive applications but the simulation cost is typically
very high making their integration with motion planning
algorithms difficult.

B. Kinodynamic motion planning

Consider a DLO parameterized by s ∈ [0, 1], its configu-
ration q(s) can be represented by the mapping q : [0, 1] →
SE(3). The resulting configuration space C would be a
sub-manifold of the infinite dimensional space SE(3)∞. As
the DLO is discretized by XDE using FEM into N − 1
elements (thus N nodes), the actual configuration space will
be a sub-manifold of SE(3)N . We will note the state space
of the DLO by X , i.e. the set of all states defined by
x =

(
q1 q̇1 ... qN q̇N

)T
.

Recently, this manifold has been identified for quasi-static
elastic rods without contacts [3]. However, to the best of
our knowledge, we are still unable to extend this result to
dynamic rods with contacts.

As shown in [9], RRTs can be extended to handle kino-
dynamics constraints of the system. Ideally, we need to keep
the Voronoi-bias property for the state space. This would
requires to provide three methods:
• A state sampler for the DLO. As we mentioned

previously, we are still unable to identify the manifold
of dynamic states with contacts for a physically realistic
DLO. Consequently, it seems complicated to sample
states for the DLO and more especially to perform
uniform sampling on this manifold.

• A local planner for moving between two states. Given
two states xnear and xrand, the aim of the local planner
would be to give the sequence of control ũloc for the
system to go from xnear to xrand. In practice, it must be
fast and able to reach the state xrand with a low error.
However, in our case of dynamic DLO with contacts,
we do not have a complete local planning method for
finding a trajectory between two states.

• A metric on the state space. Although good metric
between two configurations of a DLO could be obtained
in many ways (e.g. considering swept volume), finding
a good metric when working in a state space is generally
more complex. This could be provided by the local
planner using the cost to go between states as measure
of energy for example.

In the opposite, a naive random control sampling would
be to choose a control for a given gripper in the space of
admissible wrenches. Then this control would be integrated
for a given amount of time (typically also chosen randomly).
However, such approach leads to an inefficient exploration of
the state space as we would loose the Voronoi-bias property
of the RRT. Indeed, as shown in [9], the resulting tree would
actually have a strong bias toward already explored regions.

The inefficiency of this approach has been experimentally
verified in our case.

Instead of planning directly in this control space, we
chose as an alternative to plan in the space of quasi-static
configurations of the gripper. Under this assumption, the state
sampling is straightforward (we sample a position and orien-
tation in SE(3)) and the local planner can be achieved with a
controller for the gripper. To this end, XDE provides smooth
bodies interactions mechanisms as Proportional-Derivative
coupling for a given body position. This can be applied to
a system where the gripper, a rigid body, is grasping the
cable. In our local planner, the controller minimizes the error
between current position and velocity of the gripper and its
desired position at null speed (see II-C).

To avoid confusion, we will note by B the space on which
we perform sampling, i.e. the set of all states b, where

b =

(
bpos
bs

)
with

{
bpos ∈ SE(3)

bs ∈ {0, 1}
Here bpos is the position of the gripper in the workspace
and bs is the position of the gripper along the DLO. Note
we restricted bs to be a discrete Degree of Freedom (DoF)
for our needs, but this could be generalized to any position
s ∈ [0, 1]. The sampling space B is then 7-dimensional.

This approach can be seen as an compromise between the
two previously mentioned and enables us to keep a good
exploration of the state space.

C. Motion planning framework

At the local planning level, the physics engine XDE can
provide the state transition model xk+1 = f(xk, uk) for a
DLO at step k. The given control uk represents external
forces and torques applied on a given gripper of the DLO. At
the local planning level, XDE provides a simulator and a PD
controller which computes for a given DLO state xfrom and
a sampled gripper state b ∈ B the sequence of controls ũloc to
reach the resulting state xto. Let gpos : X ×{0, 1} → SE(3)
be defined as {

q1 if bs = 0

qN if bs = 1

In other words, the mappings gpos represents the position of
the desired gripper.

The desired position of the gripper bpos is related to the
DLO state xto by

bposHg = g(xto, bs)

where Hg ∈ SE(3) is the position of DLO at g(xto, bs)
relatively to the gripper frame and is assumed known and
fixed (see figure 1).

As shown in figure 1, the PD controller minimizes the
error between the current gripper position p and velocity v
and the desired gripper position bpos described by bs at null
speed.

From the global view and as shown in figure 2, the output
to the manipulation planning problem is the trajectory πsol :



Fig. 1. Illustration of the PD coupling between the gripper (in grey) current
position p and its desired position bpos. The current actuated end of the
DLO (in yellow) given by bs can be expressed from p using the known and
fixed transformation Hg . Note the positions of the DLO are given along its
centerline.

XDE

OMPL

Fig. 2. Overview of the motion planning framework. Upper (resp. lower)
part represents the local (resp. global) planning level.

[0, T ]→ U×{0, 1} of duration T . This trajectory brings the
initial DLO state xstart to the desired state xgoal.

As the system is underactuated, we more exactly consider
a goal region Xgoal ⊂ X rather than a goal state. In our case
of study of disassembly studies, this actually makes sense
as the start state is well defined and the goal is typically
a roughly defined state, or more formally a subset of the
state space. The case of assembly studies is the symmetric
problem with a start region and a well defined goal state and
can addressed in the same way by processing backwards.

This local approach can be coupled with any Motion Plan-
ning library and we chose OMPL [16] in our implementation.

D. Detailed planning algorithm

The algorithm presented in Algorithm 1 gives a general
view of the kinodynamic manipulation planning algorithm
we implemented.

The pseudo-metric used in the NEAREST function returns
the distance in SE(3) between the gripper setpoint given by
bpos and the corresponding position on the DLO g(xnear, bs).

The PD controller for the gripper terminates if the goal
bpos is reached at null speed (i.e. if the error is below

Algorithm 1 Kinodynamic RRT for a DLO (xstart, Xgoal)
1: Initialize the tree T with xstart
2: while ¬ solved and iter < Nmax do
3: b← random gripper state ∈ B or goal position
4: xnear ← NEAREST(T , b)
5: Set gripper at position bs
6: Initialize controller for gripper with goal bpos
7: while not controller done do
8: Step simulator for ∆t
9: end while

10: Add current state xcur to T
11: Add edge (xnear, xcur, ũloc)
12: end while
13:

Fig. 3. Local planning sliding motion of the DLO (in blue) along an
obstacle. Normal forces are shown as orange arrows. The yellow extremity
represents the actuated one for this motion, i.e. where the gripper is.

a threshold) or after a given amount of simulated time,
avoiding the system to be stuck in local minima.

E. Planning with contacts

At each simulation step, the PD controller computes the
corresponding wrench and applies it on the gripper. As
the gripper moves, the DLO follows and may slides along
obstacles (see figure 3).

As most of the motion planning problem formulation
states the configurations must lies in set of collision free
configurations Cfree, it is well known that the exploration of
classical sampling-based algorithms is very sensitive to the
ε − goodness of the considered space. Although requiring
only collision-free configurations can be an expectation, we
believe it is most commonly used as planning with the
contact-space is still a challenging problem. However, taking
advantage of the contact can also guide the exploration by
allowing the tree to slide along the contact space.

Some work already underlined the importance of environ-
mental constraints for other related problems such robotic
grasping [4].

Even if it may seems obvious, we emphasize that without
contacts some manipulation planning scenarios for a DLO
cannot be solved. Indeed, as contacts add constraints to
DLO dynamics, it actually increases its deformation space



Fig. 4. Solution path for the ”crack” toy scenario. The DLO starts from
the front side of the crack (a and b) and goes to the back side (c and d).

by allowing new states that could not be reached without
contacts.

We will show in the results that allowing the contact space
substantially changes the efficiency of our algorithm.

III. RESULTS

In this section, we will present some simulation experi-
ments of DLO manipulation and will show how the use of
contacts can dramatically improves the planning time.

We show the effectiveness of our approach on four sce-
narios:

• The backward scenario (figure 6). On this toy scenario
where the main difficulty consists in reversing the DLO
orientation between start ang goal orientations. In this
case, an approach where first planning for the DLO head
would fail.

• The crack scenario (figure 4). A toy scenario consisting
in an two empty spaces connected by a crack through
a wall, presenting a typical narrow passage for a DLO.

• The hole scenario (figure 5). A similar toy scenario,
but here the two empty spaces are connected by a hole
through a wall, making a longer and thus generally
harder narrow passage for a DLO.

• The engine scenario shown (figure 7) corresponding to a
concrete industrial disassembly study for the cable. The
model consists in 132K faces and 65K vertices. This is
a typically highly constrained scenario, presenting many
narrow passages.

Fig. 5. Solution path for the ”hole” toy scenario. As in for the ”crack”
scenario, the DLO starts from the front side of the hole (a and b) and goes
to the back side (c and d).

Fig. 6. Solution path for the ”backward” toy scenario. Note the head (in
magenta) position of the DLO on both start (a) and goal (f) states.

Each scenario has been run 50 times with a limit in time
of 30 minutes and in memory of 4GB. All the benchmarks
were run on a PC with 16GB of main memory and using
one core of an Intel Core i7-2720QM processor running at
2.2GHz.

Results the manipulation planning of the DLO with con-
tacts are shown in table I. Resolution time and number of
generated states are given with as an average and a standard
deviation.
• The sensitivity to the ε − goodness of the state space

if low comparatively to collision free approaches. The
interested reader may refer to [13] where a more clas-
sical collision free approach has been applied on some
similar scenarios.

• The number of generated nodes in the roadmap is
relatively low, implying a good exploration rate of the



Fig. 7. The ”engine” model (a) and a solution path (from b to d) where
b (resp. d) shows the start (resp. goal) state. Note that on solution paths
figures (b to d), the model view has been clipped for clarity.

TABLE I
PLANNING WITH CONTACTS RESULTS

Scenario Success rate Resolution time
(in seconds)

Number of generated
states

crack 100% 35.7± 26.5 106± 78

hole 100% 93.1± 142.2 147± 226

backward 100% 97.6± 296.9 211± 635

engine 92% 251.2± 276.1 39± 43

algorithm.
As a comparison, we implemented a variant of the pre-

sented algorithm that does not allow contacts. When staying
in the collision free space, none of the scenario could be
solved. The exploration rate is much more slower as the
number of generated nodes at the timeout is generally up
to tens of thousands. This is mainly due to the fact that
generated states close to the contact space are more likely to
fail exploring the free space.

IV. CONCLUSION

In this paper, we proposed a motion planning method that
solves the manipulation planning problem, i.e. finds sequence
of manipulation controls, for a Deformable Linear Object.
The proposed planner builds a roadmap in the state space and
uses contact motions to handle efficiently highly constrained
spaces. Results show allowing states in contact improves
significantly the planning time and can be necessary for
the completeness of some scenarios, as it increases the
deformation space of the DLO. We underlie the importance
of considering the contact space in the motion planning
problem, especially for systems such as deformable bodies.

In future work, we plan to take advantage of contact forces
provided by the simulator to guide the motion planning
algorithm.
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